| Chapter Introduction | |
| s10aac | nag_tanh Hyperbolic tangent, tanh x |
| s10abc | nag_sinh Hyperbolic sine, sinh x |
| s10acc | nag_cosh Hyperbolic cosine, cosh x |
| s11aac | nag_arctanh Inverse hyperbolic tangent, arctanh x |
| s11abc | nag_arcsinh Inverse hyperbolic sine, arcsinh x |
| s11acc | nag_arccosh Inverse hyperbolic cosine, arccosh x |
| s13aac | nag_exp_integral Exponential integral E1 (x) |
| s13acc | nag_cos_integral Cosine integral Ci(x) |
| s13adc | nag_sin_integral Sine integral Si(x) |
| s14aac | nag_gamma Gamma function gamma(x) |
| s14abc | nag_log_gamma Log Gamma function ln(gamma(x)) |
| s14aec |
nag_real_polygamma Derivative of the psi function psi(x) |
| s14afc |
nag_complex_polygamma Derivative of the psi function psi(z) |
| s14bac | nag_incomplete_gamma Incomplete gamma functions P(a,x) and Q(a,x) |
| s15abc | nag_cumul_normal Cumulative normal distribution function, P(x) |
| s15acc | nag_cumul_normal_complem Complement of cumulative normal distribution function, Q(x) |
| s15adc | nag_erfc Complement of error function, erfc x |
| s15aec | nag_erf Error function, erf x |
| s17acc | nag_bessel_y0 Bessel function Y0 (x) |
| s17adc | nag_bessel_y1 Bessel function Y1 (x) |
| s17aec | nag_bessel_j0 Bessel function J0 (x) |
| s17afc | nag_bessel_j1 Bessel function J1 (x) |
| s17agc | nag_airy_ai Airy function Ai(x) |
| s17ahc | nag_airy_bi Airy function Bi(x) |
| s17ajc | nag_airy_ai_deriv Airy function Ai'(x) |
| s17akc | nag_airy_bi_deriv Airy function Bi'(x) |
| s17alc |
nag_bessel_zeros Zeros of Bessel functions Jalpha(x), J'alpha(x), Yalpha(x) or Y'alpha(x) |
| s18acc | nag_bessel_k0 Modified Bessel function K0 (x) |
| s18adc | nag_bessel_k1 Modified Bessel function K1 (x) |
| s18aec | nag_bessel_i0 Modified Bessel function I0 (x) |
| s18afc | nag_bessel_i1 Modified Bessel function I1 (x) |
| s18ccc | nag_bessel_k0_scaled Scaled modified Bessel function ex K0 (x) |
| s18cdc | nag_bessel_k1_scaled Scaled modified Bessel function ex K1 (x) |
| s18cec | nag_bessel_i0_scaled Scaled modified Bessel function e-|x| I0 (x) |
| s18cfc | nag_bessel_i1_scaled Scaled modified Bessel function e-|x| I1 (x) |
| s18ecc |
nag_bessel_i_nu_scaled Scaled modified Bessel function e-x Inu/4(x) |
| s18edc |
nag_bessel_k_nu_scaled Scaled modified Bessel function ex Knu/4(x) |
| s18eec |
nag_bessel_i_nu Modified Bessel function Inu/4(x) |
| s18efc |
nag_bessel_k_nu Modified Bessel function Knu/4(x) |
| s18egc |
nag_bessel_k_alpha Modified Bessel functions Kalpha+n(x) for real x > 0, selected values of alpha ≥ 0 and n = 0,1,...,N |
| s18ehc |
nag_bessel_k_alpha_scaled Scaled modified Bessel functions functions Kalpha+n(x) for real x > 0, selected values of alpha ≥ 0 and n = 0,1,...,N |
| s18ejc |
nag_bessel_i_alpha Modified Bessel functions Ialpha+n-1(x) or Ialpha-n+1(x) for real x ≠ 0, non-negative alpha < 1 and n = 1,2,...,|N|+1 |
| s18ekc |
nag_bessel_j_alpha Bessel functions Jalpha+n-1(x) or Jalpha-n+1(x) for real x ≠ 0, non-negative alpha < 1 and n = 1,2,...,|N|+1 |
| s19aac | nag_kelvin_ber Kelvin function ber x |
| s19abc | nag_kelvin_bei Kelvin function bei x |
| s19acc | nag_kelvin_ker Kelvin function ker x |
| s19adc | nag_kelvin_kei Kelvin function kei x |
| s20acc | nag_fresnel_s Fresnel integral S(x) |
| s20adc | nag_fresnel_c Fresnel integral C(x) |
| s21bac | nag_elliptic_integral_rc Degenerate symmetrised elliptic integral of 1st kind RC (x,y) |
| s21bbc | nag_elliptic_integral_rf Symmetrised elliptic integral of 1st kind RF (x,y,z) |
| s21bcc | nag_elliptic_integral_rd Symmetrised elliptic integral of 2nd kind RD (x,y,z) |
| s21bdc | nag_elliptic_integral_rj Symmetrised elliptic integral of 3rd kind RJ (x,y,z,r) |
| s21cbc |
nag_jacobian_elliptic Jacobian elliptic functions sn, cn and dn with complex arguments |
| s21ccc |
nag_jacobian_theta Jacobian theta functions with real arguments |
| s21dac |
nag_elliptic_integral_f Elliptic integrals of the second kind with complex arguments |
| s22aac |
nag_legendre_p Legendre and associated Legendre functions of the first kind with real arguments |